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The past decade has witnessed the rapid advance in organ-
ic–inorganic  hybrid  perovskite  solar  cells  (PSCs).  Owing  to
unique  optoelectronic  properties  of  perovskites,  the  power
conversion efficiency  (PCE)  of  PSCs  has  jumped from 3.8% to
25.5%[1–4].  However,  under the stimulus of illumination, mois-
ture, oxygen and heat, perovskites exhibit unsatisfactory stabil-
ity  due  to  weak  bonding  among  the  components  in  these
soft-lattice  crystals[5–7].  Doping  and  passivation  engineering
with alkali  metal  cations can enhance the intrinsic  stability  of
perovskite materials.  Here,  the recent progress of  alkali  metal
cations engineering is reviewed, and the impact on the crystal-
lization, lattice structure, photovoltaic performance and stabil-
ity is discussed.

The  doping  of  alkali  metal  cations  has  been  explored  re-
cently[8, 9].  Cs+ and Rb+ can occupy A-site in perovskite lattice
(Fig.  1(a)).  The  smaller  Cs+ (1.69  Å)  in  MA/FA  perovskites  re-
duces the tolerance factor, shifting crystal structure towards a
cubic  form  to  stabilize  photoactive α-FAPbI3 phase. Fig.  1(b)
shows  XRD  patterns  of  MA/FA  perovskites  with  different  Cs+

content[10].  The  sample  without  Cs+ (black  curve)  showed
small peaks at 11.61° and 12.71°, corresponding to photo-inact-
ive  δ-FAPbI3 and  PbI2,  respectively.  When  doping  Cs+,  these
peaks vanished, indicating that Cs+ in perovskites could inhib-
it  the  formation  of  yellow  phase.  In  addition,  Cs+ can  en-
hance the thermal and humidity stability of perovskite materi-
als and devices[11−13]. The effect of Cs+ content on thermal sta-
bility  is  shown  in Fig.  1(c).  This  work  indicated  that  per-
ovskite degradation was associated with oxygen in air. Cs+ dop-
ing (molar  ratio x = 0.09)  can hinder  the interaction between
perovskite and oxygen.

Park et al.[14] reported that Rb+ could improve the humid-
ity stability  of  RbxFA1–xPbI3 solar  cells.  The absorption spectra
of  RbxFA1–xPbI3 film  barely  changed  in  ambient  environment
(Fig. 1(d)). While the absorbance of FAPbI3 film decreased signi-
ficantly and began to decompose within 6 h. Gratzel et al.[15] in-
troduced Rb+ into perovskite to form a quadruple-cation com-
pound named RbCsMAFA.  The PbI2 and δ-FAPbI3 peaks  were
weakened,  implying  that  Rb+ could  be  incorporated  into  the
lattice  and  adjust  crystal  structure  like  Cs+.  Encapsulated  sol-

ar  cells  with  Rb+ kept  95%  of  their  initial  performance  after
500 h  at  85  °C.  Rb+ incorporation can effectively  alleviate  de-
fect  migration  in  mixed  halide  perovskite[16].  Rb+ doping
yields  high-performance  PSCs  with  negligible  hysteresis  and
enhanced stability.

K+ could effectively passivate defects at both grain bound-
aries  (GBs)  and  interfaces,  inhibiting  halide  anions  migration
under light illumination[17, 18].  Owing to the small  ionic radius
(1.38  Å)  of  K+,  some  studies  indicated  that  it  could  not  oc-
cupy  the  A-site  of  perovskite  lattice  but  enter  the  interstitial
position (Fig. 2(a))[19]. K+ inhibits the formation of I-Frankel de-
fects  which  is  regarded  as  the  origin  of  the  current–voltage
(J–V) hysteresis  (Fig.  2(b)).  Based on density functional  theory
(DFT) calculation, Zhao et al. demonstrated that K+ prefers in-
terstitial occupation to A-site occupation, which increases the
ion-migration  energy  barrier  and  inhibits  photoinduced
phase separation[20].

Though Na+ and Li+ are too small  to occupy the A-site in
lattice,  they  can  affect  device  performance via adjusting  cry-
stallization  process  and  passivating  defects  at  GBs  and  inter-
faces.  Doping  Na+ into  the  precursor  solution  could  improve
the  crystal  quality  of  perovskite  films[21, 22].  In  addition,  sur-
face passivation with Na+ is a feasible approach to reduce de-
fects. Fig.  2(c)  shows surface topographic scanning electronic
microscopy (SEM) images without/with sodium p-toluenesulf-
onate  (STS)  between  perovskite  layer  and  hole-transport  lay-
er[23].  Though  there  is  negligible  change  for  overall  surface
morphology  of  perovskite  film,  the  formation  of  tiny  bright
particles  (~25  nm)  around  the  grains  was  clearly  observed  in
the  sample  with  STS,  which  could  passivate  non-radiative  re-
combination  centers  at  GBs.  Na+ could  interact  with  the  un-
der-coordinated halide anions (I/Br) at perovskite surface, redu-
cing  surface  trap  states  and  improving  device  performance.
Li+ could occupy interstitial positions[24].  Zhang et al.[25] intro-
duced a small amount of LiI into the frame of perovskite crys-
tals.  Certain  ion  migration  and  aggregation  in  perovskite  led
to N/P doping. The cations (e.g. MA+, Li+) accumulated at per-
ovskite/PCBM interface and anions (e.g. I−)  at  perovskite/NiOx

interface  (Fig.  2(d)).  As  a  result,  an  ionic  built-in  field  formed
with a direction from N to P, assisting carriers transport and ex-
traction.  Besides,  the  accumulated  ions  lifted  quasi-Fermi
level  of  n  side (Efn)  while  lowered that  of  p  side (Efp),  thus  in-
creasing Voc.

In  short,  alkali  metal  cation  engineering  is  a  positive  ap-
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proach.  The  exact  location  of  alkali  metal  cations  in  per-

ovskite  films  is  still  ambiguous.  More  experimental  and theo-

retical investigation is required.
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Fig.  1.  (Color online)  (a)  Illustration of  Cs+ and Rb+ positions in perovskite lattice.  (b)  XRD patterns for  CsxMAFA perovskites (x = 0%, 5%, 10%,
15%). Reproduced with permission[10], Copyright 2016, Royal Society of Chemistry. (c) Perovskite films with different Cs+ content exposed to differ-
ent  atmosphere.  Reproduced  with  permission[11],  Copyright  2017,  Royal  Society  of  Chemistry.  (d)  Absorbance  change  of  FAPbI3 (Left)  and
Rb0.05FA0.95PbI3 (Right)  perovskite  films  stored  in  the  dark  at  85%  RH  for  different  durations.  Reproduced  with  permission[14],  Copyright  2017,
John Wiley & Sons.

 

 

Fig. 2. (Color online) (a) K+ occupies the interstitial sites and inhibits the formation of I-Frankel defects. (b) J−V curves for perovskite solar cells
without and with KI doping under forward and reverse scans. Reproduced with permission[19],  Copyright 2018, American Chemical Society. (c)
SEM images for films without/with STS. Reproduced with permission[23], Copyright 2020, John Wiley & Sons. (d) The enlarged quasi-Fermi level
splitting. Reproduced with permission[25], Copyright 2017, John Wiley & Sons.
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